Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.590
Filtrar
1.
J Med Chem ; 67(8): 6610-6623, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38598312

RESUMO

Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.


Assuntos
Antibacterianos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Humanos , Bactérias Gram-Negativas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Cristalografia por Raios X , Sinergismo Farmacológico , Células Hep G2 , Modelos Moleculares , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/síntese química , Zinco/química
2.
Drug Dev Res ; 85(2): e22172, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38488434

RESUMO

Epigenetic modifications play a significant role in cancer progression, making them potential targets for therapy. Histone deacetylase inhibitors have shown promise in inhibiting cancer cell growth, including in breast cancer (BC). In this research, we examined the potential of using suberoyl anilide hydroxamic acid (SAHA)-loaded ß-lg nanofibrils as a drug delivery system for triple-negative BC cell lines. We assessed their impact on cell cycle progression, apoptosis, levels of reactive oxygen species, and mitochondrial membrane potential in cancer cells. The combination of SAHA and ß-lg nanofibrils demonstrated enhanced efficacy in inhibiting cell growth, inducing cell cycle arrest, and promoting apoptosis (43.78%) compared to SAHA alone (40.09%). Moreover, it effectively targeted cancer cells without promoting drug resistance while using a low concentration of the nanofibrils. These findings underscore the promising potential of nanofibril-based drug delivery systems for BC treatment.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Inibidores de Histona Desacetilases/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ácidos Hidroxâmicos/farmacologia , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Ciclo Celular , Apoptose , Proliferação de Células , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
3.
Exp Parasitol ; 259: 108727, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38431113

RESUMO

Toxoplasmosis is a zoonosis that is a worldwide health problem, commonly affecting fetal development and immunodeficient patients. Treatment is carried out with a combination of pyrimethamine and sulfadiazine, which can cause cytopenia and intolerance and does not lead to a parasitological cure of the infection. Lysine deacetylases (KDACs), which remove an acetyl group from lysine residues in histone and non-histone proteins are found in the Toxoplasma gondii genome. Previous work showed the hydroxamate-type KDAC inhibitors Tubastatin A (TST) and Vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) were effective against T. gondii. In the present study, the effects of three hydroxamates (KV-24, KV-30, KV-46), which were originally designed to inhibit human KDAC6, showed different effects against T. gondii. These compounds contain a heterocyclic cap group and a benzyl linker bearing the hydroxamic acid group in para-position. All compounds showed selective activity against T. gondii proliferation, inhibiting tachyzoite proliferation with IC50 values in a nanomolar range after 48h treatment. Microscopy analyses showed that after treatment, tachyzoites presented mislocalization of the apicoplast, disorganization of the inner membrane complex, and arrest in the completion of new daughter cells. The number of dividing cells with incomplete endodyogeny increased significantly after treatment, indicating the compounds can interfere in the late steps of cell division. The results obtained in this work that these new hydroxamates should be considered for future in vivo tests and the development of new compounds for treating toxoplasmosis.


Assuntos
Toxoplasma , Toxoplasmose , Humanos , Lisina/farmacologia , Pirimetamina/farmacologia , Pirimetamina/uso terapêutico , Ácidos Hidroxâmicos/farmacologia , Vorinostat/farmacologia
4.
Biomed Pharmacother ; 173: 116374, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447451

RESUMO

Here we present the generation and characterization of patient-derived organoids (PDOs) from colorectal cancer patients. PDOs derived from two patients with TP53 mutations were tested with two different HDAC inhibitors (SAHA and NKL54). Cell death induction, transcriptome, and chromatin accessibility changes were analyzed. HDACIs promote the upregulation of low expressed genes and the downregulation of highly expressed genes. A similar differential effect is observed at the level of chromatin accessibility. Only SAHA is a potent inducer of cell death, which is characterized by the upregulation of BH3-only genes BIK and BMF. Up-regulation of BIK is associated with increased accessibility in an intronic region that has enhancer properties. SAHA, but not NKL54, also causes downregulation of BCL2L1 and decreases chromatin accessibility in three distinct regions of the BCL2L1 locus. Both inhibitors upregulate the expression of innate immunity genes and members of the MHC family. In summary, our exploratory study indicates a mechanism of action for SAHA and demonstrate the low efficacy of NKL54 as a single agent for apoptosis induction, using two PDOs. These observations need to be validated in a larger cohort of PDOs.


Assuntos
Neoplasias do Colo , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Cromatina/genética , Ácidos Hidroxâmicos/farmacologia , Apoptose/genética , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Proteína Supressora de Tumor p53/genética
5.
Bioorg Med Chem Lett ; 102: 129670, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387692

RESUMO

Histone deacetylase 6 (HDAC6) has drawn more and more attention for its potential application in Alzheimer's disease (AD) therapy. A series of tetrahydro-ß-carboline (THßC) hydroxamic acids with aryl linker were synthesized. In enzymatic assay, all compounds exhibited nanomolar IC50 values. The most promising compound 11d preferentially inhibited HDAC6 (IC50, 8.64 nM) with approximately 149-fold selectivity over HDAC1. Molecular simulation revealed that the hydroxamic acid of 11d could bind to the zinc ion by a bidentate chelating manner. In vitro, 11d induced neurite outgrowth of PC12 cells without producing toxic effects and showed obvious neuroprotective activity in a model of H2O2-induced oxidative stress.


Assuntos
Carbolinas , Inibidores de Histona Desacetilases , Peróxido de Hidrogênio , Ratos , Animais , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/farmacologia , Peróxido de Hidrogênio/farmacologia , Ácidos Hidroxâmicos/farmacologia , Crescimento Neuronal , Histona Desacetilase 1/metabolismo , Relação Estrutura-Atividade
6.
Cancer Lett ; 586: 216666, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311053

RESUMO

Glioblastoma (GBM) is a highly aggressive and treatment-resistant brain tumor, necessitating novel therapeutic strategies. In this study, we present a mechanistic breakthrough by designing and evaluating a series of abiraterone-installed hydroxamic acids as potential dual inhibitors of CYP17A1 and HDAC6 for GBM treatment. We established the correlation of CYP17A1/HDAC6 overexpression with tumor recurrence and temozolomide resistance in GBM patients. Compound 12, a dual inhibitor, demonstrated significant anti-GBM activity in vitro, particularly against TMZ-resistant cell lines. Mechanistically, compound 12 induced apoptosis, suppressed recurrence-associated genes, induced oxidative stress and initiated DNA damage response. Furthermore, molecular modeling studies confirmed its potent inhibitory activity against CYP17A1 and HDAC6. In vivo studies revealed that compound 12 effectively suppressed tumor growth in xenograft and orthotopic mouse models without inducing significant adverse effects. These findings highlight the potential of dual CYP17A1 and HDAC6 inhibition as a promising strategy for overcoming treatment resistance in GBM and offer new hope for improved therapeutic outcomes.


Assuntos
Androstenos , Neoplasias Encefálicas , Glioblastoma , Esteroide 17-alfa-Hidroxilase , Animais , Humanos , Camundongos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Desacetilase 6 de Histona/genética , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Estresse Oxidativo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Exp Parasitol ; 258: 108716, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340779

RESUMO

There are more than 240 million cases of malaria and 600,000 associated deaths each year, most due to infection with Plasmodium falciparum parasites. While malaria treatment options exist, new drugs with novel modes of action are needed to address malaria parasite drug resistance. Protein lysine deacetylases (termed HDACs) are important epigenetic regulatory enzymes and prospective therapeutic targets for malaria. Here we report the antiplasmodial activity of a panel of 17 hydroxamate zinc binding group HDAC inhibitors with alkoxyamide linkers and different cap groups. The two most potent compounds (4a and 4b) were found to inhibit asexual P. falciparum growth with 50% inhibition concentrations (IC50's) of 0.07 µM and 0.09 µM, respectively, and demonstrated >200-fold more selectivity for P. falciparum parasites versus human neonatal foreskin fibroblasts (NFF). In situ hyperacetylation studies demonstrated that 4a, 4b and analogs caused P. falciparum histone H4 hyperacetylation, suggesting HDAC inhibition, with structure activity relationships providing information relevant to the design of new Plasmodium-specific aliphatic chain hydroxamate HDAC inhibitors.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Parasitos , Animais , Recém-Nascido , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Antimaláricos/uso terapêutico
8.
Future Med Chem ; 16(5): 469-492, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38293775

RESUMO

Histone deacetylase inhibitors not only possess favorable effects on modulating tumor microenvironment and host immune cells but also can reactivate the genes silenced due to deacetylation and chromatin condensation. Hydroxamic acid hybrids as promising histone deacetylase inhibitors have the potential to address drug resistance and reduce severe side effects associated with a single drug molecule due to their capacity to simultaneously modulate multiple targets in cancer cells. Accordingly, rational design of hydroxamic acid hybrids may provide valuable therapeutic interventions for the treatment of breast cancer. This review aimed to provide insights into the in vitro and in vivo anti-breast cancer therapeutic potential of hydroxamic acid hybrids, together with their mechanisms of action and structure-activity relationships, covering articles published from 2020 to the present.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Relação Estrutura-Atividade , Microambiente Tumoral
9.
J Hepatol ; 80(4): 610-621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38242326

RESUMO

BACKGROUND & AIMS: Patients with metastatic, treatment-refractory, and relapsed hepatoblastoma (HB) have survival rates of less than 50% due to limited treatment options. To develop new therapeutic strategies for these patients, our laboratory has developed a preclinical testing pipeline. Given that histone deacetylase (HDAC) inhibition has been proposed for HB, we hypothesized that we could find an effective combination treatment strategy utilizing HDAC inhibition. METHODS: RNA sequencing, microarray, NanoString, and immunohistochemistry data of patient HB samples were analyzed for HDAC class expression. Patient-derived spheroids (PDSp) were used to screen combination chemotherapy with an HDAC inhibitor, panobinostat. Patient-derived xenograft (PDX) mouse models were developed and treated with the combination therapy that showed the highest efficacy in the PDSp drug screen. RESULTS: HDAC RNA and protein expression were elevated in HB tumors compared to normal livers. Panobinostat (IC50 of 0.013-0.059 µM) showed strong in vitro effects and was associated with lower cell viability than other HDAC inhibitors. PDSp demonstrated the highest level of cell death with combination treatment of vincristine/irinotecan/panobinostat (VIP). All four models responded to VIP therapy with a decrease in tumor size compared to placebo. After 6 weeks of treatment, two models demonstrated necrotic cell death, with lower Ki67 expression, decreased serum alpha fetoprotein and reduced tumor burden compared to paired VI- and placebo-treated groups. CONCLUSIONS: Utilizing a preclinical HB pipeline, we demonstrate that panobinostat in combination with VI chemotherapy can induce an effective tumor response in models developed from patients with high-risk, relapsed, and treatment-refractory HB. IMPACT AND IMPLICATIONS: Patients with treatment-refractory hepatoblastoma have limited treatment options with survival rates of less than 50%. Our manuscript demonstrates that combination therapy with vincristine, irinotecan, and panobinostat reduces the size of high-risk, relapsed, and treatment-refractory tumors. With this work we provide preclinical evidence to support utilizing this combination therapy as an arm in future clinical trials.


Assuntos
Hepatoblastoma , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Panobinostat/farmacologia , Panobinostat/uso terapêutico , Hepatoblastoma/tratamento farmacológico , Irinotecano/uso terapêutico , Vincristina/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/induzido quimicamente , Inibidores de Histona Desacetilases/uso terapêutico , Neoplasias Hepáticas/patologia , Ácidos Hidroxâmicos/farmacologia
10.
Chem Pharm Bull (Tokyo) ; 72(2): 173-178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296560

RESUMO

Histone deacetylase 8 (HDAC8) is a zinc-dependent HDAC that catalyzes the deacetylation of nonhistone proteins. It is involved in cancer development and HDAC8 inhibitors are promising candidates as anticancer agents. However, most reported HDAC8 inhibitors contain a hydroxamic acid moiety, which often causes mutagenicity. Therefore, we used machine learning for drug screening and attempted to identify non-hydroxamic acids as HDAC8 inhibitors. In this study, we established a prediction model based on the random forest (RF) algorithm for screening HDAC8 inhibitors because it exhibited the best predictive accuracy in the training dataset, including data generated by the synthetic minority over-sampling technique (SMOTE). Using the trained RF-SMOTE model, we screened the Osaka University library for compounds and selected 50 virtual hits. However, the 50 hits in the first screening did not show HDAC8-inhibitory activity. In the second screening, using the RF-SMOTE model, which was established by retraining the dataset including 50 inactive compounds, we identified non-hydroxamic acid 12 as an HDAC8 inhibitor with an IC50 of 842 nM. Interestingly, its IC50 values for HDAC1 and HDAC3-inhibitory activity were 38 and 12 µM, respectively, showing that compound 12 has high HDAC8 selectivity. Using machine learning, we expanded the chemical space for HDAC8 inhibitors and identified non-hydroxamic acid 12 as a novel HDAC8 selective inhibitor.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Avaliação Pré-Clínica de Medicamentos , Histona Desacetilases/metabolismo , Antineoplásicos/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Aprendizado de Máquina , Proteínas Repressoras
11.
J Med Chem ; 67(3): 2066-2082, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38261411

RESUMO

In this work, a series of multitargeting histone deacetylase (HDAC) inhibitors capable of regulating the signal transduction between RAS protein and downstream effectors were obtained by introducing a zinc-ion-binding group into the framework of rigosertib via different linkers. Among them, two representative compounds, XSJ-7 and XSJ-10, not only showed stronger antiproliferative activity against many types of cancer cells including solid tumor cells but also presented more potent inhibition on different subtypes of HDAC than suberoylanilide hydroxamic acid (SAHA). Significantly, XSJ-10 presented moderate pharmacokinetic behaviors and showed stronger antitumor activity than oxaliplatin, SAHA, and rigosertib in the HT-29 xenograft mouse models without significant systemic toxicity. Research on the anticancer mechanism of XSJ-10 revealed that it can effectively induce the apoptosis of cancer cells and suppress the tumor by strongly inhibiting the RAS-RAF-MEK-ERK signaling pathway and the acetylation level of HDAC3.


Assuntos
Antineoplásicos , Glicina/análogos & derivados , Inibidores de Histona Desacetilases , Sulfonas , Humanos , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Linhagem Celular Tumoral , Proliferação de Células , Vorinostat/farmacologia , Apoptose , Antineoplásicos/farmacologia
12.
Cancer Res Commun ; 4(2): 349-364, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38284882

RESUMO

CD26 is ubiquitously and intensely expressed in osteoclasts in patients with multiple myeloma, whereas its expression in plasma cells of patients with multiple myeloma is heterogeneous because of its cellular diversity, immune escape, and disease progression. Decreased expression levels of CD26 in myeloma cells constitute one of the mechanisms underlying resistance to humanized anti-CD26 mAb therapy in multiple myeloma. In the current study, we show that histone deacetylase inhibition (HDACi) with broad or class-specific inhibitors involves the induction of CD26 expression on CD26neg myeloma cells both transcriptionally and translationally. Furthermore, dipeptidyl peptidase Ⅳ (DPPⅣ) enzymatic activity was concomitantly enhanced in myeloma cells. Combined treatment with HDACi plus CD26mAb synergistically facilitated lysis of CD26neg myeloma cells not only by antibody-dependent cellular cytotoxicity but also by the direct effects of mAb. Of note, its combination readily augmented lysis of CD26neg cell populations, refractory to CD26mAb or HDACi alone. Chromatin immunoprecipitation assay revealed that HDACi increased acetylation of histone 3 lysine 27 at the CD26 promoter of myeloma cells. Moreover, in the absence of HDACi, c-Myc was attached to the CD26 promoter via Sp1 on the proximal G-C box of myeloma cells, whereas, in the presence of HDACi, c-Myc was detached from Sp1 with increased acetylation of c-Myc on the promoter, leading to activation of the CD26 promoter and initiation of transcription in myeloma cells. Collectively, these results confirm that HDACi plays crucial roles not only through its anti-myeloma activity but by sensitizing CD26neg myeloma cells to CD26mAb via c-Myc/Sp1-mediated CD26 induction, thereby augmenting its cytotoxicity. SIGNIFICANCE: There is a desire to induce and sustain CD26 expression on multiple myeloma cells to elicit superior anti-myeloma response by humanized anti-CD26 mAb therapy. HDACi upregulates the expression levels of CD26 on myeloma cells via the increased acetylation of c-MycK323 on the CD26 promoter, leading to initiation of CD26 transcription, thereby synergistically augments the efficacy of CD26mAb against CD26neg myeloma cells.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/tratamento farmacológico , Inibidores de Histona Desacetilases/farmacologia , Dipeptidil Peptidase 4/genética , Ácidos Hidroxâmicos/farmacologia , Histonas/metabolismo , Histona Desacetilases/genética
13.
Org Biomol Chem ; 22(4): 831-837, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38175167

RESUMO

Coprinoferrin (CPF), originally isolated from a genetically engineered strain (ΔlaeA) of the mushroom fungus Coprinopsis cinerea, is an acylated tripeptide hydroxamate consisting of tandem aligned N5-hexanoyl-N5-hydroxy-L-ornithine with modifications of N-acetyl and C-carboxamide. These unique chemical properties make CPF an iron(III) binder (siderophore), which helps in iron acquisition from the environment and promotes hyphal growth as well as fruiting body formation in C. cinerea. However, CPF's detailed mode of action remains enigmatic. In this study, we have accomplished the synthesis of CPF from N-Boc-L-glutamic acid 5-benzyl ester. The physicochemical characteristics, spectroscopic features, and biological activity observed in the synthetic CPF closely match those of natural CPF. This alignment provides unequivocal confirmation of the proposed chemical structure, facilitating a deeper understanding of its physiological role in nature, particularly in fruiting body formation.


Assuntos
Compostos Férricos , Sideróforos , Sideróforos/química , Ferro , Ácidos Hidroxâmicos/farmacologia
14.
J Biomol Struct Dyn ; 42(1): 362-383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36995068

RESUMO

Histone deacetylases (HDACs) are critical epigenetic drug targets that have gained significant attention in the scientific community for the treatment of cancer. The currently marketed HDAC inhibitors lack selectivity for the various HDAC isoenzymes. Here, we describe our protocol for the discovery of novel potential hydroxamic acid based HDAC3 inhibitors through pharmacophore modeling, virtual screening, docking, molecular dynamics (MD) simulation and toxicity studies. The ten pharmacophore hypotheses were established, and their reliability was validated by different ROC (receiving operator curve) analysis. Among them, the best model (Hypothesis 9 or RRRA) was employed for searching SCHEMBL, ZINC and MolPort database to screen out hit molecules as selective HDAC3 inhibitors, followed by different docking stages. MD simulation (50 ns) and MMGBSA study were performed to study the stability of ligand binding modes and with the help of trajectory analysis, to calculate the ligand-receptor complex RMSD (root-mean-square deviation), RMSF (root-mean-square fluctuation) and H-bond distance, etc. Finally, in-silico toxicity studies were performed on top screened molecules and compared with reference drug SAHA and established structure-activity relationship (SAR). The results indicated that compound 31, with high inhibitory potency and less toxicity (probability value 0.418), is suitable for further experimental analysis.Communicated by Ramaswamy H. Sarma.


Pharmacophore modeling and virtual screening were performed with hydroxamic acid derivatives as HDAC3 inhibitors.MD simulation was performed for 50 ns time duration for selected protein-ligand complexes.SAR and toxicity studies (using TOPKAT tool) were performed.The results of these studies might be valuable in the further design and development of more potent HDAC3 inhibitors.


Assuntos
Desenho de Fármacos , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Ligantes , Ácidos Hidroxâmicos/farmacologia , Reprodutibilidade dos Testes , Simulação de Dinâmica Molecular , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Relação Quantitativa Estrutura-Atividade
15.
Anticancer Agents Med Chem ; 24(1): 18-29, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37957868

RESUMO

Since coumarin and hydroxamic acid compounds are well-known in medicinal chemistry, a variety of their derivatives have been highlighted due to their potential uses for plentiful treatments. Different compounds of their derivatives acting through diverse activities, such as anti-tumor, anti-cancer, anti-inflammation, and histone deacetylase inhibition, have been comprehensively investigated by many researchers over the years. This present review provides the latest literature and knowledge on hydroxamic acids derived from coumarin. Overall, some recent advancements in biological activities of hybrid derivatives of hydroxamic acids containing coumarin moieties in medicinal chemistry are discussed.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Neoplasias/tratamento farmacológico , Cumarínicos/farmacologia , Cumarínicos/química , Histona Desacetilases/metabolismo , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Antineoplásicos/química
16.
Biotechnol J ; 19(1): e2300232, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37975165

RESUMO

Chlamydomonas reinhardtii has been successfully engineered to produce compounds of interest following transgene integration and heterologous protein expression. The advantages of this model include the availability of validated tools for bioengineering, its photosynthetic ability, and its potential use as biofuel. Despite this, breakthroughs have been hindered by its ability to silence transgene expression through epigenetic changes. Histone deacetylases (HDAC) are main players in gene expression. We hypothesized that transgene silencing can be reverted with chemical treatments using HDAC inhibitors. To analyze this, we transformed C. reinhardtii, integrating into its genome the mVenus reporter gene under the HSP70-rbcs2 promoter. From 384 transformed clones, 88 (22.9%) displayed mVenus positive (mVenus+ ) cells upon flow-cytometry analysis. Five clones with different fluorescence intensities were selected. The number of integrated copies was measured by qPCR. Transgene expression levels were followed over the growth cycle and upon SAHA treatment, using a microplate reader, flow cytometry, RT-qPCR, and western blot analysis. First, we observed that expression varies with the cell cycle, reaching a maximum level just before the stationary phase in all clones. Second, we uncovered that supplementation with HDAC inhibitors of the hydroxamate family, such as vorinostat (suberoylanilide-hydroxamic-acid, SAHA) at the initiation of culture increases the frequency (% of mVenus+ cells) and the level of transgene expression per cell over the whole growth cycle, through histone deacetylase inhibition. Thus, we propose a new tool to successfully trigger the expression of heterologous proteins in the green algae C. reinhardtii, overcoming its main obstacle as an expression platform.


Assuntos
Chlamydomonas reinhardtii , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Vorinostat , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Histona Desacetilases/metabolismo , Transgenes/genética
17.
ChemMedChem ; 19(2): e202300467, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38031642

RESUMO

As a critical epigenetic modulator of gene expression, histone deacetylases (HDACs) have been involved in the pathogenesis and therapeutic investigation of cancer. Quinolizidine alkaloid sophoridine is known to have anticancer efficacy but with limited indication. By incorporating the pharmacophore of the HDAC inhibitor into the ring-opened sophoridine core, a new series of sophoridine hydroxamic acid derivatives were synthesized. After structure-activity studies, a selected compound was found to exert significant cytotoxicity in triple-negative breast cancer CAL-51 cells (IC50 1.17 µM), and demonstrated low nanomolar inhibitory potency toward HDAC1/3/6. Cellular functional assays indicated that this compound was able to induce apoptosis and cause accumulation of cells in the S phase of the cell cycle. Western blot analysis revealed it to decrease the expression of DNMT1, DNMT3a and DNMT3b by down-regulating phosphor-ERK1/2. Furthermore, treatment with this compound proved to block the PI3K/AKT/mTOR signaling in the PI3KCA and PTEN-mutant CAL-51 cells. Collectively, this work provides a novel lead compound for the development of potential therapeutics against triple-negative breast cancers, possibly mesenchymal-like subtype.


Assuntos
Antineoplásicos , Neoplasias de Mama Triplo Negativas , Humanos , Inibidores de Histona Desacetilases/farmacologia , Matrinas , Alcaloides Quinolidizínicos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Fosfatidilinositol 3-Quinases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células , Histona Desacetilase 1 , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais
18.
Eur J Med Chem ; 265: 116055, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38134748

RESUMO

The bacterial infection mediated by ß-lactamases MßLs and SßLs has grown into an emergent health threat, however, development of a molecule that dual inhibits both MßLs and SßLs is challenging. In this work, a series of hydroxamates 1a-g, 2a-e, 3a-c, 4a-c were synthesized, characterized by 1H and 13C NMR and confirmed by HRMS. Biochemical assays revealed that these molecules dually inhibited MßLs (NDM-1, IMP-1) and SßLs (KPC-2, OXA-48), with an IC50 value in the range of 0.64-41.08 and 1.01-41.91 µM (except 1a and 1d on SßLs, IC50 > 50 µM), and 1f was found to be the best inhibitor with an IC50 value in the range of 0.64-1.32 and 0.57-1.01 µM, respectively. Mechanism evaluation indicated that 1f noncompetitively and irreversibly inhibited NDM-1 and KPC-2, with Ki value of 2.5 and 0.55 µM, is a time- and dose-dependent inhibitor of both MßLs and SßLs. MIC tests shown that all hydroxamates increased the antimicrobial effect of MER on E. coli-NDM-1 and E. coli-IMP-1 (expect 1b, 1d, 1g and 2d), resulting in a 2-8-fold reduction in MICs of MER, 1e-g, 2b-d, 3a-c and 4b-c decreased 2-4-fold MICs of MER on E. coli-KPC-2, and 1c, 1f-g, 2a-c, 3b, 4a and 4c decreased 2-16-fold MICs of MER on E. coli-OXA-48. Most importantly, 1f-g, 2b-c, 3b and 4c exhibited the dual synergizing inhibition against both E. coli-MßLs and E. coli-SßLs tested, resulting in a 2-8-fold reduction in MICs of MER, and 1f was found to have the best effect on the drug-resistant bacteria tested. Also, 1f shown synergizing antimicrobial effect on five clinical isolates EC04, EC06, EC08, EC10 and EC24 that produce NDM-1, resulting in a 2-8-fold reduction in MIC of MER, but its effect on E. coli and K. pneumonia-KPC-NDM was not to be observed using the same dose of inhibitor. Mice tests shown that the monotherapy of 1f or 4a in combination with MER significantly reduced the bacterial load of E. coli-NDM-1 and E. coli-OXA-48 cells in liver and spleen, respectively. The discovery in this work offered a promising bifunctional scaffold for creating the specific molecules that dually inhibit MßLs and MßLs, in combating antibiotic-resistant bacteria.


Assuntos
Serina , beta-Lactamases , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Escherichia coli , Testes de Sensibilidade Microbiana , Serina/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia
19.
Neurosci Lett ; 818: 137533, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37865186

RESUMO

Hypercholesterolemia is a risk factor for Alzheimer's disease (AD). Plasma cholesterol does not pass the blood-brain barrier whereas its metabolite 27-hydroxycholesterol (27-OHC) can enter the brain. High 27-OHC in the brain has been suggested to mediate hypercholesterolemia-induced impairments of learning and memory through promoting amyloid-ß accumulation and facilitating synaptic disruption. In AD brains, the activity of histone deacetylase (HDAC) is elevated. Treating AD animals with HDAC inhibitors decreases amyloid-ß levels and synaptic damages, which leads to memory improvement. Whether HDAC activity is involved in the actions of 27-OHC is still uncertain. In this study, 4 weekly injections of 27-OHC/vehicle were given to rats followed by 3 daily injections of HDAC inhibitor trichostatin (TSA)/vehicle. The results of Morris water maze test reveal that all rats have intact spatial learning ability during the 5-d training phase. However, the behavioral performance during the probe trial was impaired by 27-OHC treatment, which was improved by adding TSA treatments. Furthermore, 27-OHC treatments reduced the hippocampal levels of acetylated histone H3, acetylated α tubulin, insulin-degrading enzyme and postsynaptic protein PSD-95, indicating that 27-OHC treatments may induce enhanced HDAC activity, decreased amyloid-ß clearance and synaptic disruption. All reduced levels returned to the basal levels by adding TSA treatments. These findings support our hypothesis that HDAC activity is enhanced following long-term exposure to excess 27-OHC.


Assuntos
Doença de Alzheimer , Inibidores de Histona Desacetilases , Hipercolesterolemia , Animais , Ratos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Hipercolesterolemia/metabolismo , Aprendizagem Espacial
20.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958977

RESUMO

CARD9, a scaffolding protein, has been implicated in the pathogenesis of metabolic diseases, including obesity and diabetes. We recently reported novel roles for CARD9 in islet ß-cell dysregulation under duress of gluco (HG)- and glucolipotoxic (GLT) stress. CARD9 expression was also increased in ß-cells following exposure to HG and GLT stress. The current study is aimed at understanding the putative roles of histone deacetylation in HG- and GLT-induced expression of CARD9. Using two structurally distinct inhibitors of histone deacetylases (HDACs), namely trichostatin (TSA) and suberoylanilide hydroxamic acid (SAHA), we provide the first evidence to suggest that the increased expression of CARD9 seen under duress of HG and GLT stress is under the regulatory control of histone deacetylation. Interestingly, the expression of protein kinase Cδ (PKCδ), a known upstream regulator of CARD9 activation, is also increased under conditions of metabolic stress. However, it is resistant to TSA and SAHA, suggesting that it is not regulated via histone deacetylation. Based on these data, we propose that targeting the appropriate HDACs, which mediate the expression (and function) of CARD9, might be the next step to further enhance our current understanding of the roles of CARD9 in islet dysfunction under metabolic stress and diabetes.


Assuntos
Diabetes Mellitus , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Domínio de Ativação e Recrutamento de Caspases , Vorinostat , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Estresse Fisiológico , Proteínas Adaptadoras de Sinalização CARD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...